Dopa-Responsive Dystonia in Han Chinese Patients: One Novel Heterozygous Mutation in GTP Cyclohydrolase 1 (GCH1) and Three Known Mutations in TH

نویسندگان

  • Kunfang Yang
  • Rongrong Yin
  • Xiaoping Lan
  • Yuanfeng Zhang
  • Hongyi Cheng
  • Simei Wang
  • Chunmei Wang
  • Yanfen Lu
  • Jiaming Xi
  • Qin Lu
  • Jianjun Huang
  • Yucai Chen
چکیده

BACKGROUND This study aimed to clarify the diagnosis and expand the understanding of dopa-responsive dystonia (DRD). MATERIAL AND METHODS Relevant data from clinical diagnoses and genetic mutational analyses in 3 Han Chinese patients with sporadic DRD were collected and analyzed. Protein structure/function was predicted. RESULTS One novel mutation of c.679A>G (p.T227A) in GCH1 and 3 known mutations of c.457C>T (p.R153X), c.739G>A (p.G247S), and c.698G>A (p.R227H) in tyrosine hydroxylase (TH) have been found and predicted to be damaging or deleterious. All of the mutations were localized in conserved sequences. The iterative threading assembly refinement (I-TASSER) server generated three-dimensional (3D) atomic models based on protein sequences from the novel nonsense mutation of c.679A>G (p.T227A) in GCH1, which showed that residue 227 was located in the GCH1 active site. CONCLUSIONS Patients carrying different non-synonymous variants had remarkable variation in clinical phenotype. This study expands the spectrum of genotypes and phenotypes of DRD in the Han Chinese ethnicity, provides new insights into the molecular mechanism of DRD, and helps the diagnosis and treatment of DRD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GTP Cyclohydrolase I and Tyrosine Hydroxylase Gene Mutations in Familial and Sporadic Dopa-Responsive Dystonia Patients

Dopa-responsive dystonia (DRD) is a rare inherited dystonia that responds very well to levodopa treatment. Genetic mutations of GTP cyclohydrolase I (GCH1) or tyrosine hydroxylase (TH) are disease-causing mutations in DRD. To evaluate the genotype-phenotype correlations and diagnostic values of GCH1 and TH mutation screening in DRD patients, we carried out a combined study of familial and spora...

متن کامل

GTP cyclohydrolase I mutations in patients with dystonia responsive to anticholinergic drugs.

OBJECTIVES To investigate the hypothesis that GTP cyclohydrolase I (GCH1) mutations are responsible for the phenotype of highly anticholinergic responsive dystonia in patients with apparent primary torsion dystonia. METHODS From 107 British patients with clinically diagnosed primary torsion dystonia, seven patients were identified with an excellent response to anticholinergic drugs. All six e...

متن کامل

Genetic Diagnosis of Two Dopa-Responsive Dystonia Families by Exome Sequencing

Dopa-responsive dystonia, a rare disorder typically presenting in early childhood with lower limb dystonia and gait abnormality, responds well to levodopa. However, it is often misdiagnosed with the wide spectrum of phenotypes. By exome sequencing, we make a rapid genetic diagnosis for two atypical dopa-responsive dystonia pedigrees. One pedigree, presented with prominent parkinsonism, was misd...

متن کامل

Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia.

Dopa-responsive dystonia is a childhood-onset dystonic disorder, characterized by a dramatic response to low dose of L-Dopa. Dopa-responsive dystonia is mostly caused by autosomal dominant mutations in the GCH1 gene (GTP cyclohydrolase1) and more rarely by autosomal recessive mutations in the TH (tyrosine hydroxylase) or SPR (sepiapterin reductase) genes. In addition, mutations in the PARK2 gen...

متن کامل

Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase.

Tetrahydrobiopterin (BH(4)) deficiencies are a highly heterogeneous group of disorders with several hundred patients, and so far a total of 193 different mutant alleles or molecular lesions identified in the GTP cyclohydrolase I (GTPCH), 6-pyruvoyl-tetrahydropterin synthase (PTPS), sepiapterin reductase (SR), carbinolamine-4a-dehydratase (PCD), or dihydropteridine reductase (DHPR) genes. The sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2018